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Abstract: A dynamic health indicator based on regressive event-tracker algorithm is proposed
to accurately interpret the condition of critical components of machine tools in a production
system and to predict their potential sudden breakdown based on future trends. Through
sensors/actuators data acquisition, the algorithm predicts the causal links between various
monitored parameters of the system and offers a diagnosis of the health state of the system. A
safety and operational robustness regime determines the acceptable thresholds of the operational
boundaries of the electro-mechanical components of the machines. The proposed model takes
into account the possibilities of sensor values being a piecewise-linear models or a pair of
exponential functions with restricted model parameters, which can predict the runs-to-failure or
remaining useful life until a safety threshold. The events caused by sensors passing through sub
levels of safety threshold are used as a re-enforcement learning for the models. Each remaining
useful life estimation diagnosis and prognosis analysis can be conducted on individual or an
interconnected network of components within a machine. The overall health indicator based
on individual useful life estimation is calculated by deriving the weights from event-clustering
algorithm. The work can be extended to a network of machines representing a process. The
outcome of the continuously learning real-time condition monitoring modus-operandi is to
accurately measure the remaining useful life of the network of critical components of a machine.
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1. INTRODUCTION

The manufacturing process is envisioning the Industry 4.0
objectives by moving towards predictive maintenance from
preventive maintenance. The current state of predictive
maintenance deployment has seen little progress due to
the legacy equipment and latency by algorithms in high
speed manufacturing. The prior hindrance has been taken
care by the cloud services such as Orion context broker
technologies in FIWARE project (da Cruz et al., 2019;
Mehmood et al., 2019; Zyrianoff et al., 2020). The data
are streamlined into the cloud service database from a
traditional data acquisition systems. The hindrance from
slow predictions by algorithms can be tackled by incorpo-
rating low complexity and low memory routines (Mohaar
et al., 2016). The standard neural network and deep learn-
ing techniques require large training incidences of sensor
value depreciation (Rivas et al., 2020). The time series
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predictions based on regressive models such as non-linear
(Gaussian) (Belyaev et al., 2016), v support vector regres-
sion (vSVR) (Zheng et al., 2020), multivariate regression
models (Yu et al., 2018) etc. still has immense application
to fulfil (Lee et al., 2018; Burnaev, 2019; Moleda et al.,
2020; Akhavan-Hejazi and Mohsenian-Rad, 2018). The re-
gression models play vital role in realising the Industry 4.0
vision in SMEs due to the legacy technology that demands
the predictive models to be plug-n-play or cost effective
(McFarlane et al., 2020) with no overhead on memory and
hardware. The hybrid methodologies have been explored in
the predictive maintenance such as the regression models
and event-based techniques (Vasilaki et al., 2017; Huang
et al., 2019; Fadzil et al., 2019). The hybrid techniques are
preferred in the industrial implementation of fast manufac-
turing process as it brigs out best of the methodology and
adapt to the specific use cases (Zhou et al., 2019; Wang
et al., 2020). These techniques are causal and provide the
state of machine in real-time. However, these techniques
lack historical data considerations to identify the trends



Fig. 1. CAD design layout of continuous compression
machine indicating the location of thermal regulator.

in the sensors. Hence machine learning based techniques
such as regression analysis is more appropriate method.

2. CONTINUOUS COMPRESSION MACHINE

A continuous compression machine manufactures plastic
closures (bottle caps) from molten plastic. It is a non-
traditional method of moulding plastics when compared
to injection moulding machines; as the latter method has
been studied extensively about its energy performances
(Madan et al., 2015), environmental impacts (Thiriez and
Gutowski, 2006) etc. Where as the injection moulding
machine injects molten plastic in the preform cast to
create the desired shape (Liu et al., 2020). A continuous
compression moulding is a technique of forming process
by compression of molten plastic. This technology related
studies have been conducted by Peltonen et al. (1992);
Spelz and Schulze (1995); Christmann et al. (2017) and
Mayer et al. (1998). The compression moulding machine
has multiple components, however, the thermal regula-
tor component (as indicated in Fig. 1) which cools the
temperature of moving parts of the forming process is
very significant in the quality of products as well as the
health of the machine. The pneumatic valves, pumps,
coolant, filter and heat exchanger are the important sub-
components of the thermal regulator as shown in Fig. 2.
As the objective is to monitor the health of the thermal
regulator component by predicting the remaining useful
life of each sub-component via measuring temperature,
pressure, flow-rate and valve openings. The schematic of

Fig. 2. Various Components of thermal regulator.

Fig. 3. Schematic of thermal regulator.

the thermal regulator is shown in Fig. 3. The temperature
of the coolant (T ) is set by the operator. The task of the
heat exchanger control system of the thermal regulator is
to regulate and stabilise the temperature (T ) throughout
the hydraulic circuit by modulating the valve openings of
the coolant. Another control system in the coolant loop of
the thermal regulator is maintaining the constant flow-rate
(Q) of the coolant in the hydraulic circuit.

2.1 System description

The preset temperature (T ) is maintained by the control
system consisting of pneumatically controlled valves. The
coolant gains the temperature of ∆T1 from the forming
process unit and the coolant passes through heat ex-
changer to cool down by ∆T2. The final temperature,
Tx, is expected to be equal to preset temperature (i.e.
∆T1 = ∆T2). However, due to the presence of filter a
small variations are corrected by the pneumatically con-
trolled valves of the heat exchanger to make Tx ≈ T .
The control system relation between valve and the tem-
perature is shown in Fig. 4. The values of control valves
are from 0% to −100%. The value 0% indicates that the
valve is completely closed. Hence, no cooling operation is
performed. If the temperature of the coolant is increased
due to the presence of filter clogging, then the values of
valves decrease to more negative values to introduce more
cooling effect in the heat exchanger. From Fig. 4 it is
evident that the heat exchanger always strives to maintain
the temperature of the coolant constant.

Fig. 4. The modulation of control valve openings by heat
exchanger in maintaining the constant temperature in
coolant loop.



Fig. 5. The relation between flow-rate and pressure for the
coolant.

2.2 Presence of Filter sub-component in coolant loop

The suspended particulates in the coolant are filtered by
the filter sub-components progressively leading to clogs.
This filter clogs reduces the flow-rate (Q) causing increase
in pressure (P ). Hence the control system behavioural
model is shown in Fig. 5. The flow-rate of the coolant
in the thermal regulator system is kept constant through
feedback mechanisms from flow-rate sensors to pumps.
The decrease in flow-rate (Q) of the coolant prompts the
motor to pump coolant faster hence increasing the pressure
(P ). The decrease in coolant flow-rate is caused by clogging
of the filter. The boundary values of the pressure (P )
when the flow-rate, Q = 0, is 8.9. The boundary value
of the flow-rate (Q) when the pressure, P = 0, is 1021.4.
This helps manufacturing the tolerance values for the
components of the thermal regulator.

3. FAILURE MODE: FILTER CLOG

The thermal regulator failure mode effects evaluation and
critical analysis reports (FMECA) reveals the health of the
thermal regulator and the production process is effected
by the filter clogs. The progressive filter clog causes the
flow-rate to decrease over time and hence increase in the
pressure of the coolant. This critically puts progressive
load on the pumps and causes burst in the pipes or related
components. The depreciation of the filter can be directly
translated into the sensors associated with the coolant loop
i.e. pressure (P ) and flow-rate (Q). As the objective is
to predict the filter clogging process and hence calculate
the remaining useful life, the other sensors in the thermal
regulator can also be associated with the failure mode
modelling. The combination of sensors and components
build up the failure mode machine simulator as shown in
Fig. 6.

4. REMAINING USEFUL LIFE ESTIMATION

The remaining useful life is estimated by the regression
analysis on the flow-rate and pressure sensors. The model
described in (1) is the model for predicting the future
values. The g(t) is the generic function which could be
an exponential function or a linear function. σ is the offset
or can be the preset value and ε(t) is the noise in the sensor
value which could be the combination of vibrations noise
and noise from the instrumentation reading. φ(t) is the
time varying degradation rate parameter which determines

Fig. 6. Machine simulator of the failure modes

the direction of degradation, e.g. for flow-rate the φ(t) is a
negative value and positive for pressure. The σ parameter
is dominant when the magnitude of rate of degradation is
low.

f(t) = σ + φ(t)g(t) + ε(t) (1)

For a linear model the g(t) in (1) is deduced to g(t) = t;
where t is time and for non-linear exponential models
g(t) = Σnan exp(bnt); where {a, b, n} ∈ R. The linear
model provides fast prediction of sensor values based on
large historical values. The single exponential degradation
models fail to estimate the future values of sensors when
the degradation have large variances over multiple training
samples as described in Fig. 7. Hence, the experimentation
has provided a conclusive evidence of two exponential
parameter degradation functions yield more accurate re-
maining useful life estimation as shown in Fig. 8. The
first exponential term models the steep degradation and
the second exponential term provides an extremely low
curvature modelling the section with low degradation.
The safety threshold S provides a minimum operational
tolerance of the regime condition. If the sub-components’
sensor value has crossed the safety threshold, then the
component is not working in regime condition. This means
the probability of breakdown is higher. The R(t) is esti-
mated at an interval of every 1× 103 cycles and trained
with 1× 105. The remaining useful life, R(t), is estimated
to identify time remaining until the sensors cross this
safety threshold. This is due the fact that the continuous

Fig. 7. The multiple instances of coolant flow-rate (Q)
depreciation indicating the large variances in the
mean life to failure.



Fig. 8. The double exponential functions (with mod-
elling parameters a = [−0.03365, 288.9], b =
[5.062× 10−6, 3.205× 10−13]) predictions for flow-
rate from (1) and (2) with the learning sample of
4× 105. The estimated R(t) ≈ 2× 105 cycles. Sim-
ilarly for pressure, Temperature and control flow, the
R(t) are estimated at 2.2× 105, 7× 105 and 2× 104

cycles respectively.

compression machine is precision manufacturing process
and it always needs to be in regime condition with low
depreciation. From (1) and safety threshold, (S), the re-
maining useful life is estimated as shown in (2).

R(t) =
S − σ
φ(t)

− t (2)

The noise in the sensors can affect the prediction. However
by having a large historical value for training the model
the effect of noise can be minimised.

5. FAILURE MODE MACHINE SIMULATOR

The modelling of all four sensors is carried out to un-
derstand the status of each components. The remaining
useful life of R(t) for each component is estimated and the
weighting function described in (3) is used to estimate the
effective remaining useful life of the machine,Reff (t). The
effective remaining useful life is the linear combination of
the R(t). The weights are decided by the significance of
the sub-component in the overall health of the thermal
regulator.

Reff (t) = wᵀR(t) (3)

The w{·} function can be a minima operator, where the
lowest R(t) is the Reff (t) as shown in Fig. 9. The event-

Fig. 9. The machine simulator with effective remaining
useful life estimation from individual remaining useful
life estimation of components.

Fig. 10. The work flow for the effective remaining useful
life estimation of the thermal regulator component.

clustering algorithms such as the ones described by Dan-
ishvar et al. (2013, 2014, 2018) are useful in identifying
the significance or weights of sub-components in the sys-
tem. The other way is by interviewing the maintenance
engineers. From the event-clustering algorithm proposed in
(Danishvar et al., 2014), the estimated the weights for flow-
rate, pressure, control valves and temperature are 0.37,
0.27, 0.19 and 0.16 respectively. From (3), the effective
remaining useful life, Reff (t), of the thermal regulator
is ≈ 2.5× 105 cycles. The work flow of the proposed
algorithm is shown in Fig. 10.

6. CONCLUSION

The proposed methodology provides a causal system of
regression based prediction of future sensor values. The
training requires no prior knowledge of breakdown and
degradation information. The algorithm automatically
learns as the machine manufacturing in real-time. The
training samples are the current and immediate historical
samples making it faster with less training samples and
more accurate than conventional neural network method-
ologies. The model g(t) can be altered to the required
industry with the diverse sensor values. The experimen-
tation has proven that the two term exponential model
found to be more accurately modelling the sensors. The
depreciation model tracks trend of the sensors simultane-
ously and predict the current effective state of the machine.
The proposed methodology can be extended to every single
modules that drives a machine including the environmen-
tal parameters of humidity and surrounding temperature
for condition monitoring in real-time. The prediction can
be correlated to the FMECA and a cost based predictive
maintenance plan can be deployed. The results of the
experiment determines the single value health indicator
and the non-linear behaviour of the degradation that is
close to an exponential behaviour. In future, the potential
of the work is to monitor and control the parameters of
the exponential model to create customised maintenance
schedules.
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